Effect of Chitosan-Beeswax Edible Coating on Microbiological Profile of Chicken Thigh Meat at Freezer Storage

Authors

  • Salwa Haneefah Fauzia Research and Development, PT Kembang Joyo Sriwijaya, Jl. Raya Karangan, RT.12/RW.3, Jakaan, Bonowarih, Karang Ploso Subdistrict, Malang Regency, East Java 65152
  • Dedi Fardiaz Faculty of Dentistry, Muhammadiyah University, Jl. Mojopahit No. 666 B, Sidowayah, Celep, Sidoarjo Subdistrict, Sidoarjo Regency, East Java 61271
  • Laprianika Retha Hapita Sari Faculty of Medicine, Airlangga University, Jl. Prof. DR. Moestopo No.47, Pacar Kembang, Tambaksari Subdistrict, Surabaya, East Java 60132
  • Dewi Masyithoh PT. Kembang Joyo Sriwijaya and Faculty of Animal Husbandry, University of Islam Malang, Dinoyo, Lowokwaru, Malang City, East Java 65144

DOI:

https://doi.org/10.21776/ub.jitek.2024.019.01.7

Keywords:

Antimicrobial coating, chicken meat, food coating, frozen storage, petrifilm

Abstract

This research examined the effect of chitosan and beeswax edible coating with different percentages on the microbiological value (aerobic bacteria, Staphylococcus aureus, Coliform, and Escherichia coli) of chicken thigh meat in two days of storage at freezer temperature (-18oC to -20oC). The study used Completely Randomized Design with 4 treatments and 5 replications. Treatments included were A0 (control), A1 (chitosan 2%), A2 (chitosan 2% + beeswax 1%), and A3 (chitosan 2% + beeswax 2%). Variables observed were the number of aerobic bacteria, S. aureus, Coliform, and E. coli using 3MTM PetrifilmTM Plates. Results showed significant differences (p<0.05) in the number of aerobic bacteria colonies with the least colony on treatment A1. S. aureus and Coliform colonies showed significant differences (p<0.05) with the least colony on treatment A2 and A3, sequentially. There was no significant difference (p>0.05) in E. coli count due to no colonies detected on all treated samples. However, compared to controlled samples, it was found to decrease. The decrease in colony numbers shows that edible coating treatments can be used to help preserve or extend the shelf life of chicken thigh meat.

References

M Food Safety. (2017). 3MTM PetrifilmTM E. coli/Coliform Count Plate (EC) Interpretation Guide. USA: 3M.

Abdel-Naeem, H. H. S., Zayed, N. E. R. & Mansour, H. A. (2021). Effect of chitosan and lauric arginate edible coating on bacteriological quality, deterioration criteria, and sensory attributes of frozen stored chicken meat. LWT, 150.

Alhuur, K. R. G., Juniardi, E. M. & Suradi, K. (2020). Efektivitas Kitosan Sebagai Edible Coating Karkas Ayam Broiler. Jurnal Teknologi Hasil Peternakan, 1 (1), 17-24.

Apriliyani, M. W., Rahayu, P. P. & Manab, A. (2020). Stabilitas Daging Ayam dengan Pelapisan Edible Coating Berbahan Kasein-Kitosan Selama Penyimpanan. Jurnal Ilmiah INOVASI, 20(3), 1-6.

Apriliyani, M. W., Manab, A., Rahayu, P. P., Jannah, M., Hidayah, P. N., & Firdiatila, F. F. (2021). Effect of casein-chitosan edible coating on the physicochemical and microbiological characteristics of broiler meat at storage 8° C. Advances in Food Science, Sustainable Agriculture and Agroindustrial Engineering, 4 (1), 8-17.

Badan Pengawas Obat dan Makanan Republik Indonesia. (2021). Kriteria Mikrobiologi dalam Pangan Olahan. Lampiran Peraturan Kepala Badan Pengawas Obat dan Makanan Republik Indonesia No. 16 Tahun 2016, 31.

Baltic, T., Baltic, Z. M., Misic, D. et al. (2015). Influence of Marination on Salmonella spp. Growth in Broiler Breast Fillets. Acta Veterinaria, 65, 417-428.

Baltic, T., Ciric, J., Lazic, I. B. et al. (2019). Packaging as A Tool to Improve The Shelf Life of Poultry Meat. IOP Conf. Series: Earth and Environmental Science, 333, 1-4.

Eldaly, E. A., Mahmoud, A. F. A. & Abobakr, H. M. (2018). Preservative Effect of Chitosan Coating on Shelf Life and Sensory Properties of Chicken Fillets during Chilled Storage. Journal of Nutrition and Food Security, 3 (3), 139-148.

Fratini, F., Cilia, G., Turchi, B. et al. (2016). Beeswax: a minireview of its antimicrobial activity and its application in medicine. Asian Pacific Journal of Tropical Medicine, 9 (9), 839-843.

Hadidi M., Pouramin, S., Adinepour, F., Haghani, S., Jafari, S. M. (2020). Chitosan nanoparticles loaded with clove essential oil: Characterization, antioxidant and antibacterial activities. Carbohydr. Polym, 236.

Kaewthong, P., Pomponio, L., Carrascal, J. R. et al. (2019). Changes in the Quality of Chicken Breast Meat due to Superchilling and Temperature Fluctuations during Storage. Japan Poultry Science Association, 56 (4), 308-3017.

Karimnezhad F., Razavilar V., Anvar, A. A., Eskandari, S. (2017). Study the antimicrobial effects of chitosan-based edible film containing the Trachyspermum ammi essential oil on shelf-life of chicken meat. Microbiol. Res., 8, 7226.

Liu, F., W. Chang, M. Chen, et al. (2019). Tailoring Physicochemical Properties of Chitosan Films and Their Protective Effects on Meat by Varying Drying Temperature. Carbohydr. Polym, 212, 150-159.

Muñoz-Tebar, N., Pérez-Álvarez, J. A., Fernández-López, J. et al. (2023). Chitosan edible films and coatings with added bioactive compounds: antibacterial and antioxidant properties and their application to food products: a review. Polymers (Basel), 15(2), 396.

Naveed, M., Phil, L. Sohail, M. et al. (2019). Chitosan oligosaccharide (COS): an overview. International Journal of Biological Macromolecules, 129, 827-843.

Ngo, D. H., Vo, T. S., Ngo, D. N. et al. (2015). Biological effects of chitosan and its derivatives. Food Hydrocolloid, 51, 200-216.

Prestianti, I., Baharuddin, M., Sappewali, S. (2018). Uji aktivitas antibakteri ekstrak sarang lebah hutan (Apis dorsata) terhadap pertumbuhan Staphylococcus aureus, Escherichia coli dan Pseudomonas aeruginosa. ALCHEMY Jurnal Penelitian Kimia, 14 (2), 314-322.

Raphaël K. J. & Meimandipour, A. (2017). Antimicrobial activity of chitosan film forming solution enriched with essential oils; an in vitro assay. Iran. J. Biotechnol., 15, 111–119.

Sánchez-Ortega, I., García-Almendárez, B. E., Santos-López, E. M., Amaro-Reyes, A., Barboza-Corona, J. E. & Regalado, C. (2014). Antimicrobial edible films and coatings for meat and meat products preservation. The Scientific World Journal, 2014.

Souza V. G. L., Pires, J.R.A., Vieira, É.T. et al. (2019). Activity of chitosan-montmorillonite bionanocomposites incorporated with rosemary essential oil: From in vitro assays to application in fresh poultry meat. Food Hydrocoll, 89, 241-252.

Szulc, J., Machnowski, W., Kowalska, S. et al. (2020). Beeswax-modified textiles: method of preparation and assessment of antimicrobial properties. Polymers (Basel), 12 (2), 344.

Trevisani, M., Cecchini, M., Siconolfi, D. et al. (2017). Effects of beeswax coating on the oxidative stability of long-ripened italian salami. Journal of Food Quality, 1-5.

Triyannanto, E., Rahmatulloh, S., Astuti, D. et al. (2021). Pengaruh perbedaan kemasan primer pada kualitas fisik-kimia, mikrobiologi serta sensoris daging ayam frozen utuhpada suhu -18ºC. Jurnal Sain Peternakan Indonesia. 16(2), 123-129.

Verlee, A., Mincke, S. & Stevens, C. V. (2017). Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydrate Polymers, 164, 268-283.

Vijayan, S. P., Aparna, S. & Sahoo, S. K. (2023). Effect of beeswax on hydrophobicity, moisture resistance and transparency of UV curable linseed oil-based coating for compostable paper packaging. Industrial Crops and Products, 197.

Weaver, K. F., Morales, V., Dunn, S. L. et al. (2017). An introduction to statistical analysis in research: with applications in the biological and life sciences. New Jersey: John Wiley & Sons, Inc.

Yaghoubi M., Ayaseh, A., Alirezalu, K. et al. (2021) Effect of chitosan coating incorporated with Artemisia fragrans essential oil on fresh chicken meat during refrigerated storage. Polymers, 13, 716. doi: 10.3390/polym13050716.

Yan, D., Li, Y., Liu, Y. et al. (2021). Antimicrobial properties of chitosan and chitosan derivatives in the treatment of enteric infections. Molecules, 26 (7136), 1-27.

Younes, I., & Rinaudo, M. (2015). Chitin and chitosan preparation from marine sources: structure, properties and applications. Mar. Drugs. 13, 1133-1174.

Zhang, W., Qian, L. & Xiao, H. (2014). Hydrophobicity of beeswax-chitosan latex coated paper. Advanced Materials Research, 936, 1077-1081.

Zhuang, L., Zhi, X., Du, B. et al. (2020). Preparation of elastic and antibacterial chitosan–citric membranes with high oxygen barrier ability by in situ cross-linking. ACS Omega, 5 (2), 1086-1097.

Zou, P., Yang, X., Wang, J., Li, Y., Yu, H., Zhang, Y., & Liu, G. (2016). Advances in characterization and biological activities of chitosan and chitosan oligosaccharides. Food Chem. 190, 1174-1181.

Downloads

Published

2024-03-30

Issue

Section

Articles