Optimasi Aktivitas Antioksidan Peptida Aktif dari Ceker Ayam Melalui Hidrolisis Enzim Papain

Edy Susanto, Djalal Rosyidi, Lilik Eka Radiati, Subandi Subandi


The objective of this study was to optimization antioxidant activity of active peptides of chicken feet with papain hydrolysis. The research method was experimental design conducted using Factorial Completely Randomized Design. Treatments included papain concentration (control (0%) , 1%, 2%  and 4%) and Incubation time (24 hours, 36 hours and 48 hours) were repeated four times. The variables observed were proximate analysis,microstructure, dissolved protein concentration and antioxidant activity. The results indicate that the treatment of papain concentration and incubation time variations in chicken feet protein extraction gave a differenceinfluence (P <0.05) to the concentration of solubility protein and antioxidant activity. The interaction of 3% papain concentration and 36 hours incubation time resulted in the highest  antioxidant activity amount 55.10 ± 2.24 %. It could be concluded that chicken feet produced bioctive peptide compound that gave high antioxidant activity optimized by hydrolysis of papain enzymes thereby increasing their functional value.


Chicken feet; antioxidant activity; papain enzyme

Full Text:



Alpay, P., & Aktas, D. (2015). Journal of Molecular Catalysis B : Enzymatic Usage of immobilized papain for enzymatic hydrolysis of proteins. J Molecular Catalysisi B; Enzimatic, 111, 56–63. https://doi.org/10.1016/j.molcatb.2014.11.001

Arcan, I., & Yemeniciog, A. (2010). Effects of controlled pepsin hydrolysis on antioxidant potential & fractional changes of chickpea proteins.J Food Research International, 43, 140–147. https://doi.org/10.1016/j.foodres.2009.09.012

Bamdad, F., Wu, J., & Chen, L. (2011).Effects of enzymatic hydrolysis on molecular structure & antioxidant activity of barley hordein.Journal of Cereal Science, 54(1), 20–28. https://doi.org/10.1016/j.jcs.2011.01.006

Chandrasekaran Prabaharan, M. T. (2016). Production of antioxidant peptides from ferula asafoetida root protein. Int J Molecular Biology, 1(1), 1–7. https://doi.org/10.15406/ijmboa.2016.01.00003

Damez, J.-L., & Clerjon, S. (2008). Meat quality assessment using biophysical methods related to meat structure. Meat Science, 80(1), 132–149. https://doi.org/10.1016/j.meatsci.2008.05.039

Damgaard, T., Lametsch, R., & Otte, J. (2015). Antioxidant capacity of hydrolyzed animal by-products and relation to amino acid composition and peptide size distribution. J Food Sci Technol, 52(October), 6511–6519.https://doi.org/10.1007/s13197-0151745-z

Dhyantari, O., Milala, C. T., & Widyaningsih, T. D. (2015). Tikus wistar jantan yang diinduksi karagenan The Use Chicken Foot Extraction as the Source of Glucosamine as Anti-Accute Inflamation Agent by In Vivo, 3(3), 888–895.

Escudero, E., Mora, L., Fraser, P. D., Aristoy, M.-C., & Toldrá, F. (2013). Identification of novel antioxidant peptides generated in Spanish dry-cured ham. Food Chemistry, 138(2–3), 1282–8. https://doi.org/10.1016/j.foodchem.2012.10.133

Griffith, O. (2010). Practical Techniques for Centrifugal Seperations. Principles & Techniques of Biochemistry and Molecular Biology, 1–27.

Han, Z., Zhang, W., Luo, W., & Li, J. (2016). Novel Antioxidant Peptides Derived from Enzymatic Hydrolysates of Macadamia Protein. J Biosciences & Medicines, 4(February),6–14. https://doi.org/http://dx.doi.org/10.4236/jbm.2016.42002

Hettiarachchy, Navam, S. (2012). Bioactive Food Proteins and Peptides : Applications in Human Health. (A. Kenji, Sato, Marshall, M.R., Kannan, Ed.) (1st ed.). New York: CRC Press Taylor & Francis Group.

Katti, D. R., Ghosh, P., & Katti, K. S. (2008). Mineral and protein-bound water & latching action control mechanical behavior at protein-mineral interfaces in biological nanocomposites. Journal of Nanomaterials, 2008(1). https://doi.org/10.1155/2008/582973

Kezwoń, A., Chromińska, I., Frączyk, T., & Wojciechowski, K. (2016).Effect of enzymatic hydrolysis on surface activity & surface rheology of type I collagen.Colloids and Surfaces. B, Biointerfaces, 137,60–9. https://doi.org/10.1016/j.colsurfb.2015.05.017

Kusumadjaja, A. P., & Dewi, R. P. (2005). Determination of optimum condition of papain enzyme from papaya var java ( carica papaya ) penentuan kondisi optimum enzim papain dari pepaya burung varietas jawa. Indo J. Chem, 5(2), 147–151.

Lafarga, T., Aluko, E.R., Rai, D.K., O’Connor, P., &Hayes, M. (2016). Identification of bioactive peptides from a papain hydrolysate of bovine serum albumin & assessment of an .J. Food Research International, 81(January), 91–99.https://doi.org/10.1016/j.foodres.2016.01.007

Lin, Y. J., Le, G. W., Wang, J. Y., Li, Y. X., Shi, Y. H., & Sun, J. (2010). Antioxidative peptides derived from enzyme hydrolysis of bone collagen after microwave assisted acid pre-treatment and nitrogen protection. International Journal of Molecular Sciences, 11(11), 4297–4308. https://doi.org/10.3390/ijms11114297

Liu, D. C., Lin, Y. K., & Chen, M. T. (2001). Optimum Condition of Extracting Collagen from Chicken Feet & its Characetristics.Asian-Australasian Journal of Animal Sciences.https://doi.org/10.5713/ajas.2001.1638

Mäkeläinen, I., & Heikkinen, J. (2016). Centrifugation Downstream processing assignment. Aalto University The University of theChemical Technology.

Marelli, C. A., & Simons, E. L. R. (2014). Microstructure & cross-sectional shape of limb bones in great horned owls & red-tailed hawks : how do these features relate to differences in flight & hunting behavior ?J Pone, 9(8). https://doi.org/10.1371/journal.pone.0106094

Mcbroom, R., & Oliver-hoyo, M. T. (2007). Food Enzyme (2nd ed.). University of Georgia: Aspen Publishers.

Molyneux, P. (2004). The use of the stable free radical diphenylpicrylhydrazyl (dpph) for estimating antioxidant activity.Songklanakarin J. Sci. Tech., 26(2), 211–219.

Ojha, K. S., Alvarez, C., Kumar, P., O’Donnell, C. P., & Tiwari, B. K. (2016). Effect of enzymatic hydrolysis on the production of free amino acids from boarfish (Capros aper) using second order polynomial regression models. LWT - Food Science and Technology, 68, 470–476. https://doi.org/10.1016/j.lwt.2015.11.040

Rahmawati, N., Kimia, J., Matematika, F., Ilmu, D. A. N., Alam, P., & Jember, U. (2013). Kandungan Protein Terlarut Daging Ikan Patin ( Pangasius Djambal ) Akibat Variasi Pakan Kandungan Protein Terlarut Daging Ikan Patin ( Pangasius djambal ) akibat variasi pakan.

Selvakumar, P., Ling, T. C., Covington, A. D., & Lyddiatt, A. (2012). Enzymatic hydrolysis of bovine hide and recovery of collagen hydrolysate in aqueous two-phase systems. Separation & Purification Technology, 89, 282–287. https://doi.org/10.1016/j.seppur.2012.01.046

Siow, H.-L., & Gan, C.-Y.(2013). Extraction of antioxidative & antihypertensive bioactive peptides from Parkia speciosa seeds.Food Chemistry, 141(4), 3435–3442. https://doi.org/10.1016/j.foodchem.2013.06.030

Subali, B. (2010). Analisis statistika menggunakan program SPSS aplikasinya dalam rancangan percobaan.jurusan pendidikan biologi, Fakultas MIPA, Universitas Negeri Yogyakarta. Yogyakarta.

Susanto, E., Rosyidi, D., Radiati, L. E., & Subandi. (2018). Optimization of chicken feet protein degradation with variation of ph and temperature on characteristics & antioxidant activity.Submit The Journal of Poultry Science, 1–19.

Wang, X., Yu, H., Xing, R., Chen, X., Liu, S., & Li, P. (2017). Optimization of the Extraction & Stability of Antioxidative Peptides from Mackerel ( Pneumatophorus japonicus ) Protein. J BioMed Research International, 2017(2), 1–14. https://doi.org/https:/doi.org/10.1155/2017/6837285

Widyaningsih, T. D., Handayani, D., Wijayanti, N., Dita, S., & Milala, C. (2015).Ekstraksi glukosamin dari ceker ayam, (September), 2–3.

Xing, L.-J., Hu, Y.-Y., Hu, H.-Y., Ge, Q.-F., Zhou, G.-H., & Zhang, W.-G. (2016). Purification & identification of antioxidative peptides from dry-cured Xuanwei ham.Food Chemistry, 194, 951–8. https://doi.org/10.1016/j.foodchem.2015.08.101

Zarei, M., Ebrahimpour, A., Abdul-hamid, A., Anwar, F., Abu, F., Philip, R., & Saari, N. (2014). Identi fi cation& characterization of papain-generated antioxidant peptides from palm kernel cake proteins. J Food Research International, 62, 726–734. https://doi.org/10.1016/j.foodres.2014.04.041

DOI: https://doi.org/10.21776/ub.jitek.2018.013.01.2


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.